
10. OPTIMIZATION AND DESIGN 

Abstract —Particle swarm optimization (PSO) is a kind of 

swarm intelligence that is based on social-psychological 

principles and provides insights into social behavior, as well as 

contributing to electromagnetic optimization applications. In 

this paper, a multiobjective PSO approach based on 

Exponential distribution probability operator (MOPSO-E) is 

proposed.  Numerical comparisons with results using a 

multiobjective PSO with external archiving and the proposed 

MOPSO-E demonstrated that the performance of the 

MOPSO-E is promising in Jiles-Atherton vector hysteresis 

model parameter identification. The proposed MOPSO-E to 

find nondominated solutions that represent the good trade-offs 

among the objectives in the evaluated case study. 

I. INTRODUCTION 

Multiobjective optimization has become an important 

research topic for scientists and researchers because real 

world problems are multiobjective in nature. Researchers 

have developed many multiobjective optimization 

algorithms to deal with them.  

In multiobjective optimization problems (MOPs), there 

is no unique optimal solution, but rather a set of alternative 

solutions and these solutions are optimal in the wider sense 

that no other solutions in decision space are superior to 

them when all objectives are considered. They are known as 

Pareto optimal solutions, also termed nondominated, 

noninferior, admissible, or efficient solutions. 

Recently, the use of multiobjective procedures based 

on evolutionary algorithms and swarm intelligence has 

become popular to solve MOPs due to their ability to find 

multiple solutions in a single run, work without derivatives, 

and converge speedily to Pareto-optimal solutions with a 

high degree of accuracy. Particle swarm optimization (PSO) 

is one of metaheuristics of swarm intelligence field and has 

been successfully applied in MOPs [1]. Its basic idea is 

based on the simulation of simplified animal social 

behaviors, such as fish schooling and bird flocking. PSO 

works by maintaining a swarm of particles that move 

around in the search-space influenced by the improvements 

discovered by the other particles. 

In order to obtain a good performance in MOPs in 

terms of the distribution of non-dominated solutions in 

Pareto front, this paper proposes a multiobjective PSO 

based on Exponential distribution probability operator 

(MOPSO-E). 

In this paper, the proposed MOPSO-E is evaluated in 

terms of quality of solutions and robustness in Jiles-

Atherton vector hysteresis model parameter identification 

described in [2]. Furthermore, the performance of MOPSO-

E is compared with the MOPSO proposed in [3] (called 

here RNMOPSO). In the RNMOPSO, a nearest neighbor 

density estimation method is applied to obtain the density 

value of each particle for selecting the global best (gbest) 

particle. Besides, the MOPSO uses the constraint-handling 

technique from the NSGA-II (Nondominated Sorting 

Genetic Algorithm version II), an external archive of 

nondominated solutions and a mutation operator maintains 

the diversity in the external archive. 

II. FUNDAMENTALS OF MOPSO-E 

The computational flow of the MOPSO-E is given by the 

following steps: 

Step 1 (Initialization of particles in swarm): Generate 

randomly NP particles in a swarm with positions and 

velocities using a generator of random solutions based on 

uniform distribution over the parameter search space. Set 

the counter of iterations (generations), t = 0;   

Step 2 (Evaluation of particles in swarm and external 

archive updating): Evaluate the particles and store 

nondominated ones in an external archive A with size As; 

Step 3 (Crowding distance computation): Compute the 

crowding distance of each member of A and sort it in 

descending crowding distance order; 

Step 4 (Selection of gbest): A random selection is used, 

i.e., by using a uniform distribution the gbest for the swarm 

form a specified top portion (e.g. top 20%) for the sorted A, 

and store its position in gbest; 

Step 5 (Updating of velocities and positions): Update 

velocities and positions of particles according to: 

)]()([                         

  )]()([)()1(

,,2

,1,,

txtpEdc

txtped ctvwtv

jijg

ijijiji

−⋅⋅+

−⋅⋅+⋅=+

 (1) 

 )1)()1( ,,, +⋅∆+=+ (tvttxtx jijiji  (2) 

where i=1,2,…,N indicates the particles of swarm; 

t=1,2,…tmax indicates the iterations (generations), w is 

defined as inertia weight factor; vi,j(t+1) stands for the 

velocity of the i-th particle with respect to the j-th 

dimension in iteration t; and pi,j(t+1) represents the best 

previous position of the i-th particle to the j-th dimension.  

The variable pg,j(t) is the best previous position among all 

the particles along the j-th dimension in iteration t. Positive 
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10. OPTIMIZATION AND DESIGN 

constants c1 and c2 are the cognitive and social factors, 

respectively, which are the acceleration constants 

responsible for varying the particle velocity towards pbest 

(personal best) and gbest, respectively. Index g represents 

the index of the best particle among all the particles in the 

swarm. Variables ed and Ed are two random numbers using 

Exponential distribution truncated in range [0,1]. 

Step 6 (Mutation): Apply the mutation operator; 

Step 7 (Evaluating of current positions of particles): 

Evaluate the particles in swarm; 

Step 8 (Updating of external archive): Insert all new 

nondominated solution into A if they are not dominated by 

any of the stored solutions; 

Step 9 (Increasing the counter): Update the iteration 

counter, t = t + 1; 

Step 10 (Verify the stopping criterion): Return to Step 3 

until a criterion is met. In this work, a maximum number of 

iterations, tmax, is adopted. 

III. OPTIMIZATION RESULTS 

The vector J-A model is considered in its two-

dimensional version (x,y) so it is necessary ten parameters 

for the modelling of an anisotropic material: magnetization 

(MS), a, α, tensor (c) and second rank symmetric tensor (k)  

for the transverse and rolling directions [2]. Experimental 

data, obtained from a Rotational Single Sheet Tester 

(RSST) are used in the curve fitting [4]. The Mean Squared 

Error (MSE) and loss error (LE) between calculated and 

measured curves must be minimized. In other words, the 

MSE (MSEx + MSEy) and LE (LEx + LEy) are the two 

objective functions f1 and f2, respectively, to be minimized 

using MOPSO-E and RNMOPSO approaches. 

We adopted the following control parameters for tested 

RNMOPSO and MOPSO-E approaches: number of 

independent runs is 30, the population size (NP) is 20 

particles, the size of external archive (A) is 200, and 

stopping criterion (tmax) of 500 evaluations of objective 

functions. In RNMOPSO, it is adopted factors c1=c2=1.0. 

Simulation results were summarized in Table I and 

showed that the MOPSO-E (see the Pareto set in Fig. 1) 

obtained a better distribution that the RNMOPSO of non-

dominated solutions in Pareto front. In this case, the 

Euclidian distance and spacing indices uses a new Pareto 

front generated using all data stored in external archive 
during the 30 runs. 

TABLE I 
SPACING AND EUCLIDIAN DISTANCES INDICES (MEAN OF 30 RUNS) 

Indices RNMOPSO MOPSO-E 

Spacing (f1, f2) 1241.08 450.54 

Euclidian distance (f1,f2) 1073.12 905.35 

Pareto solutions 600 1290 

 

The result of MOPSO-E (see Fig. 1) with arithmetic 

mean minor was f1 = 3.6202×10
4 
and f2 = 0.3594. The 

parameter set obtained is given by Table II. In this context, 

the arithmetic mean was calculated using normalized f1 and 

f2 values. Fig. 2 shows measured and calculated curves with 

the parameters set obtained by MOPSO-E. 

 

 
Fig. 1. Pareto set points obtained in 30 runs using MOPSO-E. 

 
TABLE II 

PARAMETERS SET OBTAINED BY MOPSO-E 

Variable Rolling direction Transverse direction 

MS  1.897  × 106 [A/m]  2.345  × 106 [A/m] 

k  3.622 × 101 [A/m]  5.995     × 101 [A/m] 

c  2.256  × 10-1  2.031  × 10-1 

a  8.917 × 101 [A/m]  1.288     × 102 [A/m] 

α  1.509  × 10-4  2.097 × 10-4 
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Fig. 2. Calculated and measured B-H curves for the material under 

rotational excitation. 

 

In this paper, the utilization of MOPSO-E was effective 

and efficient for finding approximations of the Pareto front 

in the parameters identification of the Jiles-Atherton vector 

hysteresis model in the RSST.  
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